Young symmetrizer

In mathematics, a Young symmetrizer is an element of the group algebra of the symmetric group, constructed in such a way that, for the homomorphism from the group algebra to the endomorphisms of a vector space V n {\displaystyle V^{\otimes n}} obtained from the action of S n {\displaystyle S_{n}} on V n {\displaystyle V^{\otimes n}} by permutation of indices, the image of the endomorphism determined by that element corresponds to an irreducible representation of the symmetric group over the complex numbers. A similar construction works over any field, and the resulting representations are called Specht modules. The Young symmetrizer is named after British mathematician Alfred Young.

Definition

Given a finite symmetric group Sn and specific Young tableau λ corresponding to a numbered partition of n, and consider the action of S n {\displaystyle S_{n}} given by permuting the boxes of λ {\displaystyle \lambda } . Define two permutation subgroups P λ {\displaystyle P_{\lambda }} and Q λ {\displaystyle Q_{\lambda }} of Sn as follows:[clarification needed]

P λ = { g S n : g  preserves each row of  λ } {\displaystyle P_{\lambda }=\{g\in S_{n}:g{\text{ preserves each row of }}\lambda \}}

and

Q λ = { g S n : g  preserves each column of  λ } . {\displaystyle Q_{\lambda }=\{g\in S_{n}:g{\text{ preserves each column of }}\lambda \}.}

Corresponding to these two subgroups, define two vectors in the group algebra C S n {\displaystyle \mathbb {C} S_{n}} as

a λ = g P λ e g {\displaystyle a_{\lambda }=\sum _{g\in P_{\lambda }}e_{g}}

and

b λ = g Q λ sgn ( g ) e g {\displaystyle b_{\lambda }=\sum _{g\in Q_{\lambda }}\operatorname {sgn}(g)e_{g}}

where e g {\displaystyle e_{g}} is the unit vector corresponding to g, and sgn ( g ) {\displaystyle \operatorname {sgn}(g)} is the sign of the permutation. The product

c λ := a λ b λ = g P λ , h Q λ sgn ( h ) e g h {\displaystyle c_{\lambda }:=a_{\lambda }b_{\lambda }=\sum _{g\in P_{\lambda },h\in Q_{\lambda }}\operatorname {sgn}(h)e_{gh}}

is the Young symmetrizer corresponding to the Young tableau λ. Each Young symmetrizer corresponds to an irreducible representation of the symmetric group, and every irreducible representation can be obtained from a corresponding Young symmetrizer. (If we replace the complex numbers by more general fields the corresponding representations will not be irreducible in general.)

Construction

Let V be any vector space over the complex numbers. Consider then the tensor product vector space V n = V V V {\displaystyle V^{\otimes n}=V\otimes V\otimes \cdots \otimes V} (n times). Let Sn act on this tensor product space by permuting the indices. One then has a natural group algebra representation C S n End ( V n ) {\displaystyle \mathbb {C} S_{n}\to \operatorname {End} (V^{\otimes n})} on V n {\displaystyle V^{\otimes n}} (i.e. V n {\displaystyle V^{\otimes n}} is a right C S n {\displaystyle \mathbb {C} S_{n}} module).

Given a partition λ of n, so that n = λ 1 + λ 2 + + λ j {\displaystyle n=\lambda _{1}+\lambda _{2}+\cdots +\lambda _{j}} , then the image of a λ {\displaystyle a_{\lambda }} is

Im ( a λ ) := V n a λ Sym λ 1 V Sym λ 2 V Sym λ j V . {\displaystyle \operatorname {Im} (a_{\lambda }):=V^{\otimes n}a_{\lambda }\cong \operatorname {Sym} ^{\lambda _{1}}V\otimes \operatorname {Sym} ^{\lambda _{2}}V\otimes \cdots \otimes \operatorname {Sym} ^{\lambda _{j}}V.}

For instance, if n = 4 {\displaystyle n=4} , and λ = ( 2 , 2 ) {\displaystyle \lambda =(2,2)} , with the canonical Young tableau { { 1 , 2 } , { 3 , 4 } } {\displaystyle \{\{1,2\},\{3,4\}\}} . Then the corresponding a λ {\displaystyle a_{\lambda }} is given by

a λ = e id + e ( 1 , 2 ) + e ( 3 , 4 ) + e ( 1 , 2 ) ( 3 , 4 ) . {\displaystyle a_{\lambda }=e_{\text{id}}+e_{(1,2)}+e_{(3,4)}+e_{(1,2)(3,4)}.}

For any product vector v 1 , 2 , 3 , 4 := v 1 v 2 v 3 v 4 {\displaystyle v_{1,2,3,4}:=v_{1}\otimes v_{2}\otimes v_{3}\otimes v_{4}} of V 4 {\displaystyle V^{\otimes 4}} we then have

v 1 , 2 , 3 , 4 a λ = v 1 , 2 , 3 , 4 + v 2 , 1 , 3 , 4 + v 1 , 2 , 4 , 3 + v 2 , 1 , 4 , 3 = ( v 1 v 2 + v 2 v 1 ) ( v 3 v 4 + v 4 v 3 ) . {\displaystyle v_{1,2,3,4}a_{\lambda }=v_{1,2,3,4}+v_{2,1,3,4}+v_{1,2,4,3}+v_{2,1,4,3}=(v_{1}\otimes v_{2}+v_{2}\otimes v_{1})\otimes (v_{3}\otimes v_{4}+v_{4}\otimes v_{3}).}

Thus the set of all a λ v 1 , 2 , 3 , 4 {\displaystyle a_{\lambda }v_{1,2,3,4}} clearly spans Sym 2 V Sym 2 V {\displaystyle \operatorname {Sym} ^{2}V\otimes \operatorname {Sym} ^{2}V} and since the v 1 , 2 , 3 , 4 {\displaystyle v_{1,2,3,4}} span V 4 {\displaystyle V^{\otimes 4}} we obtain V 4 a λ = Sym 2 V Sym 2 V {\displaystyle V^{\otimes 4}a_{\lambda }=\operatorname {Sym} ^{2}V\otimes \operatorname {Sym} ^{2}V} , where we wrote informally V 4 a λ Im ( a λ ) {\displaystyle V^{\otimes 4}a_{\lambda }\equiv \operatorname {Im} (a_{\lambda })} .

Notice also how this construction can be reduced to the construction for n = 2 {\displaystyle n=2} . Let 1 End ( V 2 ) {\displaystyle \mathbb {1} \in \operatorname {End} (V^{\otimes 2})} be the identity operator and S End ( V 2 ) {\displaystyle S\in \operatorname {End} (V^{\otimes 2})} the swap operator defined by S ( v w ) = w v {\displaystyle S(v\otimes w)=w\otimes v} , thus 1 = e id {\displaystyle \mathbb {1} =e_{\text{id}}} and S = e ( 1 , 2 ) {\displaystyle S=e_{(1,2)}} . We have that

e id + e ( 1 , 2 ) = 1 + S {\displaystyle e_{\text{id}}+e_{(1,2)}=\mathbb {1} +S}

maps into Sym 2 V {\displaystyle \operatorname {Sym} ^{2}V} , more precisely

1 2 ( 1 + S ) {\displaystyle {\frac {1}{2}}(\mathbb {1} +S)}

is the projector onto Sym 2 V {\displaystyle \operatorname {Sym} ^{2}V} . Then

1 4 a λ = 1 4 ( e id + e ( 1 , 2 ) + e ( 3 , 4 ) + e ( 1 , 2 ) ( 3 , 4 ) ) = 1 4 ( 1 1 + S 1 + 1 S + S S ) = 1 2 ( 1 + S ) 1 2 ( 1 + S ) {\displaystyle {\frac {1}{4}}a_{\lambda }={\frac {1}{4}}(e_{\text{id}}+e_{(1,2)}+e_{(3,4)}+e_{(1,2)(3,4)})={\frac {1}{4}}(\mathbb {1} \otimes \mathbb {1} +S\otimes \mathbb {1} +\mathbb {1} \otimes S+S\otimes S)={\frac {1}{2}}(\mathbb {1} +S)\otimes {\frac {1}{2}}(\mathbb {1} +S)}

which is the projector onto Sym 2 V Sym 2 V {\displaystyle \operatorname {Sym} ^{2}V\otimes \operatorname {Sym} ^{2}V} .

The image of b λ {\displaystyle b_{\lambda }} is

Im ( b λ ) μ 1 V μ 2 V μ k V {\displaystyle \operatorname {Im} (b_{\lambda })\cong \bigwedge ^{\mu _{1}}V\otimes \bigwedge ^{\mu _{2}}V\otimes \cdots \otimes \bigwedge ^{\mu _{k}}V}

where μ is the conjugate partition to λ. Here, Sym i V {\displaystyle \operatorname {Sym} ^{i}V} and j V {\displaystyle \bigwedge ^{j}V} are the symmetric and alternating tensor product spaces.

The image C S n c λ {\displaystyle \mathbb {C} S_{n}c_{\lambda }} of c λ = a λ b λ {\displaystyle c_{\lambda }=a_{\lambda }\cdot b_{\lambda }} in C S n {\displaystyle \mathbb {C} S_{n}} is an irreducible representation of Sn, called a Specht module. We write

Im ( c λ ) = V λ {\displaystyle \operatorname {Im} (c_{\lambda })=V_{\lambda }}

for the irreducible representation.

Some scalar multiple of c λ {\displaystyle c_{\lambda }} is idempotent,[1] that is c λ 2 = α λ c λ {\displaystyle c_{\lambda }^{2}=\alpha _{\lambda }c_{\lambda }} for some rational number α λ Q . {\displaystyle \alpha _{\lambda }\in \mathbb {Q} .} Specifically, one finds α λ = n ! / dim V λ {\displaystyle \alpha _{\lambda }=n!/\dim V_{\lambda }} . In particular, this implies that representations of the symmetric group can be defined over the rational numbers; that is, over the rational group algebra Q S n {\displaystyle \mathbb {Q} S_{n}} .

Consider, for example, S3 and the partition (2,1). Then one has

c ( 2 , 1 ) = e 123 + e 213 e 321 e 312 . {\displaystyle c_{(2,1)}=e_{123}+e_{213}-e_{321}-e_{312}.}

If V is a complex vector space, then the images of c λ {\displaystyle c_{\lambda }} on spaces V d {\displaystyle V^{\otimes d}} provides essentially all the finite-dimensional irreducible representations of GL(V).

See also

Notes

  1. ^ See (Fulton & Harris 1991, Theorem 4.3, p. 46)

References

  • William Fulton. Young Tableaux, with Applications to Representation Theory and Geometry. Cambridge University Press, 1997.
  • Lecture 4 of Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103.
  • Bruce E. Sagan. The Symmetric Group. Springer, 2001.